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SYNTHETIC STUDIES OF ERYTHROMYCINS. III.l TOTAL SYNTHESIS OF

ERYTHRONOLIDE A THROUGH (9S)-9-DIHYDROERYTHRONOLIDE A

Mitsuhiro Kinoshita,* Masayuki Arai, Naoki Ohsawa, and Masaya Nakata
Department of Applied Chemistry, Keio University
Hiyoshi, Kohoku-ku, Yokohama 223, JAPAN

Summary: Erythronolide A (1) was enantiospecifically synthesized through (95)-9-dihydro-
erythronolide A (2) from the chiral C-10-C-13, C-7-C-9, and C-1-C-6 synthetic segments, 3, 3,
and 4, respectively. The overall yield of 1 from 4 was 1.84% in 21 steps.

In the preceding paper,l we described our synthetic strategy toward erythronolide A g&)
and the synthesis of the C-10-C-13 synthetic segment 3, a requisite for the plan. In this
paper, we will report a new enantiospecific total synthesis of erythronolide A g%) through
(95)-9-dihydroerythronolide A (2), which was derived from the major epimer 9a generated by the
coupling of 3 with the new C-1-C-9 segmentl\Bl.l For the purpose of synthesizing 8 from the
previously prepared C~1-C-6 segment'3,2 an adequate chiral C-7-C-9 segment had first to be

inquired. After many unsuccessful attempts, the most adaptable C-7-C-9 synthetic segment was

OBn

BnO BnO

found to be (S)—(+)—2—(2—bromo-l—methy1ethyl)—l,3-dioxolane‘Q?([G]D +3°, [u]365 +11°), which
was prepared from the known (R)—(—)—3-benzyloxy—2-methy1propanal4([ot]D -28°) in three steps
(1. HOCH2

methyl ketone'é’was treated in ether with an excess of Grignard reagent prepared from 13 equiv

CHZOH, p-TSA, MeCN; 2. H2/Pd, MeOH; 3. EtBr, Ph3P, DEAD, THF) in 66% yield. The

of magnesium and 4.3 equiv of 5 to afford the alcoh01,§§’5(79% isolated yield, Iu]D +3°,

[Ot]365 +20°(c 0.64)) in a 9.9:1 epimeric excess. Thus obtained 6 was silylated (1.5 equiv
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t-butyldimethylsilyl triflate, 2,6-lutidine, CH2C12, rt, 15h) to give 73 (89%, [OL]D 0°,
~

[d]365
26°C, 19h) to provide the aldehyde 8 in 72% yield. A 1.9M etherial solution of g} (3 equiv)

+8° (c 0.64)), whose ethylene acetal group was selectively cleaved (Snclz, acetone,

was lithiated with 3 equiv of butyllithium (1.38M in hexane) at -100°C for 15 min under argon.
To this solution was added a 0.3M etherial solution of 8 (1 equiv) and stirred at -100°C for
lh. Quench with saturated aqueous NH4C1 followed by chromatographic isolation afforded the
major coupling product %a (ca. 50% yield6 from 8) contaminated with a by—product,7 and the
pure minor one 293 (10% yield from 8). The crude 9a was homogeneously hydrogenated (0.25
molar amount of RhCl(PPh3)3 ,8 benzene, 50 atm HZ' 24°C, 5d) to give ;93 (41% from,g, [d]D
-6.5°) in a 6.1:1 epimeric excess. The configuration of 10 was confirmed by the following

fashion (Scheme 1). The product ;9 was converted into ;&3 ([OL]D +7.2° (c 0.9)) in two steps

Scheme 1

(1. 46% ag HF-MeCN (1:2), 24°C, lh; 2. KOH (8 equiv), BnCl (4 equiv), DMF, 24°C, 5h) in 81%
yield. Direct benzylation of 19 gave ;ga (84%, [(x]D +10.2°). On the other hand, LiAlH4
reduction (THF, 75°C, 36h) of the naturally derivedrg}o gave ;33 (72%, [a]D +17.1° (c 0.96,
MeOH)), which was benzylated (BnCl, KOH, DMF, rt)12 to afford }}3 ([a]D +7.1° (c 0.90)) and
l§3 ((a]D +15.0°). O-Isopropylidenation of 14 followed by silylation provided ;33 ([o,]D
+10.4°). The synthetic 11 and 12 were spectroscopically and chromatographically identical
with the corresponding materials produced by the aforesaid transformations starting from
naturally derived 2, Consequently, the structures shown for 6, Z/ 8, 9a, and 10 were
determined and the anti-selectivity in homogeneous hydrogenation of the “Cram" product 9a was
also confirmed.

Having thus prepared the intermediate 11, which contains the entire chiral sequence of
(9S)-9-dihydroerythronolide A (2) in the proper absolute configuration, we turned our
attention to the facile transformation of 11 into 2, which would be convertible to
erythronolide A (1) through the 3,5-0-benzylidene-ketolactone 25. Triethylsilylation
(triethylsilyl triflate (3 equiv), 2,6-lutidine (4 equiv), CH2C12, 23°C, 1.5h) of 11 afforded
l§3 (93%, [o',]D +19.4°), which was hydrogenolyzed (1 atm Hz, pd-black, 20°C, 0.5h) to give 16
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(92%). t-Butyldiphenylsilylation (TBDPSCl (4 equiv), imidazole (4 equiv), DMF, 25°C, 3h) of
16 followed by the selective O—isopropylidenation13 (2-methoxypropene (5 equiv), PPTS (0.1
equiv), CH2C12§ 25°C, 3h) of the silylation product }] (82%) afforded the desired 3,5:9,11-
diacetonide 18~ (64% from 15, [d]D +31.2°) and the 3,5:11,13-diacetonide (5%). Acetylation
(ACZO (10 equiv), DMAP (0.1 equiv), Py, 60°C, 20h) of 18 followed by desilylation ((n—Bu)4NF
(6 equiv), THF, 60°C, 8h) of the acetate 19 (86%) gave 293 (70% from 18, [OL]D +29.8°). PDC
oxidation (PDC (4 equiv), 3A molecular sieves, 22°C, 4h) of 29 followed by deacetylation (1M
NaOH-dioxane(l:1), 23°C, 2h) of the acid Z} (85%) yielded the seco-acid 3,5:9,11-diacetonide
22 (82% from 29). Treatment (Ph3P (1.5 equiv), (2-Pys)2 (1.5 equiv), THF, 23°C, 8h) of 22
afforded the 2-pyridinethiol ester (95%), which was subjected to lactonization by the modified
Corey's methodl4 (toluene, 110°C, 24h) to furnish ;§3 (65%, [OL]D +12.1° {(c 0.66)). Exposure
(24°C, 4h) of 23 to 50% aqueous acetic acid afforded quantitatively’g3 (mp 203-206°C (acetone-
hexane), [OL]D +9.5° (¢ 2.0, MeOH)), which proved to be identical in all respects with a sample
of 2 (mp 203-206°C) prepared by the method of Jones and Rowley.11 The overall yield of 2 from
11 was 21.1% in 11 steps. Selective 3,5-O-benzylidenation ({(dimethoxytoluene (5 equiv), CSA
2C12, 0°C, 24h) of 2 gave £§3 (80%, mp 128-130°C (acetone—he§ane), [OL]D +5.4°).
Selective oxidation (PCC, 3A molecular sieves, 0°C, 0.5h) of 24 afforded Z§ (80%, [OL]D ~36.6°

(0.1 equiv), CH

(MeOH) , which was hydrogenolyzed with Pd-black (1 atm H.,, MeOH, 0.5h) to give}$3 (82%, mp 170~

2
172°C (acetone-hexane), [Ot]g5 -36.7° (c 0.9, MeOH)(lit.13 -37°)). The synthetic sample ofA;
proved to be identical with naturally derived erythronolide A (mp 170-172°C (1it.15 mp 172-

25 . . . .
173°¢C), [OL]D -37.3°(c 0.9, MeOH)) by spectroscopic means and mixture melting point measurement.

OR’

R'O
15 R:-R%*:Bn 18 R-TBDPS,R?:H,R%*TES
16 R:=R*:H 19 R-TBDPS,R%:Ac,R*TES
17 R-H, R2=TBDPS 20 R-R%*:H,R2:Ac
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